

We can think of the set of symmetries (e.g. "rotate clockwise 90°) and the binary operation being composition — i.e. perform one followed by the other.

What properties should a set of symmetries satisfy? 1.) "Do nothing" is a symmetry (i.e. the <u>identity</u>)

2.) Every symmetry has a symmetry that undoes it (i.e. an <u>inver</u>se).

3) Slightly more subtly: Composition of symmetries is associative. (f.g).h = f.(g.h) A group generalizes the notion of a set of symmetries along w/ The composition operation.

1.) \exists on element $e \in G$ s.t. $\forall x \in G, e * x = x * e = x$ (e is called the <u>identity</u>).

2.)
$$\forall a \in G \quad \exists a^{-1} \in G \quad s.t. \quad a \neq a^{-1} = a^{-1} \neq a = e.$$

(a is called an inverse of a)

3.) $(a * b) * c = a * (b * c) \forall a, b, c \in G (associativity)$

Ex:
$$\langle \mathcal{R}, + \rangle$$
 is a group:
• $(a+b)+c=a+(b+c)$, so it's associative;
• $0+a=a+0=a \forall a \in \mathcal{R}$, and

However, < 12+, + > is not a group. * is associative, The set of positive integers but eta>a V e,a & R. i.e. There's no identity.

$$E_X: \langle Q - \{o\}, \cdot \rangle$$
 is a group (1 is the identity)

 $\langle \mathcal{R} - \{o\}, \cdot \rangle$ is not a group : it has | as the only candidate for an identity, but there is no $a \in \mathcal{R} - \{o\}$ s.t. 2a = 1.

Notice that every integer is equivalent to one of 0, 1, ..., n-1. We write the equivalence classes as $\overline{0}, \overline{1}, ..., \overline{n-1}$. We call this set $\frac{7}{n7}$, and it forms a group under addition mod n.

Ex: $\{-1, 1\} \subseteq \mathbb{R}$ w/ multiplication is a group. (How does it compare to $\frac{\mathbb{R}}{2\mathbb{R}}?$)

EX: (Harder) Fix a set S. Let $G = \{ \{ \forall : S \rightarrow S \mid \forall a \text{ bijection} \}$ where the operation is composition.

e.g. if S={1,...,n}, G=set of permutations of n elements. How many elts in G? We'll come back to this example soon.

If $S = \{1, 2\}$, then $G = \{id, f\}$, where f(i) = 2, f(2) = 1. This looks like the "same" group as both $\{1, -1\}$ and $\frac{\pi}{2\pi}$. We'll formalite this notion soon.

Basic properties of groups

Theorem: If
$$\langle G, \star \rangle$$
 is a group and $a, b, c \in G$, then
if $a \star b = a \star c$, then $b = c$, and if $b \star a = c \star a$ then $b = c$.
"left concellation" "right concellation"

Proof: Assume
$$a \neq b = a \neq c$$
. Then $\exists a^{-1} \in G \quad s.t. \quad a^{-1} \neq a^{-2}e$.
Thus $a^{-1} \neq (a \neq b) = a^{-1} \neq (a \neq c)$
 $=) (a^{-1} \neq a) \neq b = (a^{-1} \neq a) \neq c$
 $=) e \neq b = e \neq c$
 $=) b = c$.

By a symmetric argument, right cancellation holds as well. \Box

Define
$$x = a^{-1} * b$$
. Then $a * x = a * (a^{-1} * b)$
= $(a * a^{-1}) * b$
= $e * b = b$.

Thus, such an element exists. Now we show it's unique. Suppose a * c = b. Then $a * c = a * x \Longrightarrow c = x$, so x is unique.

A similar argument shows that the second part of the statement holds: Cor: If e is an identity of (G_1, x) , then e is the unique identity. Pf: I unique x, y s.t. a * x = a and y * a = a, so x = e = y. Cor: If $x \in G_1$ then x has a unique inverse x^- and if x * c = e

or
$$(+ \pi \in G_1, then \pi has a unique inverse \pi), and if $\pi * c = e$
or $c * \pi = e$, then $c = \pi^{-1}$.$$

Pf:
$$(a * b) * (b^{-1} * a^{-1}) = ((a * b) * b^{-1}) * a^{-1}$$

$$= (a * (b * b^{-1})) * a^{-1}$$

$$= (a * e) * a^{-1}$$

$$= a * a^{-1} = e.$$
Thus, since inverses are unique, $(a * b)^{-1} = (b^{-1} * a^{-1}) \square$

EX: Let G = Ee, a, b}. What are the possible groups w/ G as the indurlying set?

If $a \neq b = a$, then b = e, which is hit the case. similarly, $a \neq b \neq b$, and $b \neq a \neq a$ or b. Thus $a \neq b = e$, $b \neq a = e$.

$$a^2 = a + a \neq a$$
 (since $a \neq e$) and $a^2 \neq e$ (since $a \neq b = a^{-1}$)
Thus $a^2 = b$, and, similarly $b^2 = a$, so the table becomes
 $\frac{1}{a}e = a = b$

_	٤	a	Ь
ł	e	a	b
۵	a	b	Ł
Ь	Ь	e	¢_

Can Check that this is in fact a group (relabel e=0, a=1, b=2, and this becomes 7/37). In fact, this is the only group W/ 3 elements "up to isomorphism" (we will see what this means later).

Def: The order of a group G,
$$|G|$$
, is the cardinality of G.
If $a \in G$, then the order of a , $|a|$, is the smallest $h \in \mathbb{Z}_+$
s.t. $a^h = e$. If $a^h \neq e \forall n$, then $|a| = \infty$.

Example: • e'=e, so |e|=1. The identity is the only elt of order 1.

- $\ln \frac{7}{3R_{j}} |o| = 1$, |+|+|=0, so |1|=3, and 2+2=1, |+2=0, so |2|=3.
- $|n\langle \mathbb{Z}, +\rangle, \forall n\in \mathbb{R} \text{ s.t. } n\neq 0, |n| = \infty.$

Notation: From now on, for a group G, we will usually write the operation as \cdot instead of \star , and for a.b, we'll write just ab. We'll denote the identity by 1, and denote $\chi \dots \chi = \chi^{h}$, and $\chi^{-1} \dots \chi^{-1} = \chi^{h}$

However, if the group is abelian, we will sometimes use t as the operation, in which case the identity will be 0, and we write $x + \dots + x$ as $n \cdot x$.

Subgroups

Def: $H \subseteq G$ is a subgroup of G, denoted $H \leq G$ if H is a group w/ The same operation as G.

E_{X} : $2\pi \leq \pi_{J}$ { $0,23 \leq \pi/4\pi$.

We'll come back to subgroups later.